
D03 – Partial Differential Equations

D03PJF – NAG Fortran Library Routine Document

Note. Before using this routine, please read the Users’ Note for your implementation to check the interpretation of bold
italicised terms and other implementation-dependent details.

1 Purpose

D03PJF integrates a system of linear or nonlinear parabolic partial differential equations (PDEs), in one
space variable with scope for coupled ordinary differential equations (ODEs). The spatial discretisation
is performed using a Chebyshev C0 collocation method, and the method of lines is employed to reduce
the PDEs to a system of ODEs. The resulting system is solved using a backward differentiation formula
(BDF) method or a Theta method (switching between Newton’s method and functional iteration).

2 Specification

SUBROUTINE D03PJF(NPDE, M, TS, TOUT, PDEDEF, BNDARY, U, NBKPTS,
1 XBKPTS, NPOLY, NPTS, X, NCODE, ODEDEF, NXI, XI,
2 NEQN, UVINIT, RTOL, ATOL, ITOL, NORM, LAOPT,
3 ALGOPT, W, NW, IW, NIW, ITASK, ITRACE, IND, IFAIL)
INTEGER NPDE, M, NBKPTS, NPOLY, NPTS, NCODE, NXI, NEQN,
1 ITOL, NW, IW(NIW), NIW, ITASK, ITRACE, IND, IFAIL
real TS, TOUT, U(NEQN), XBKPTS(NBKPTS), X(NPTS),
1 XI(∗), RTOL(∗), ATOL(∗), ALGOPT(30), W(NW)
CHARACTER∗1 NORM, LAOPT
EXTERNAL PDEDEF, BNDARY, ODEDEF, UVINIT

3 Description

D03PJF integrates the system of parabolic-elliptic equations and coupled ODEs

NPDE∑
j=1

Pi,j

∂Uj

∂t
+Qi = x−m ∂

∂x
(xmRi), i = 1, 2, . . . ,NPDE, a ≤ x ≤ b, t ≥ t0, (1)

Fi(t, V, V̇ , ξ, U∗, U∗
x , R∗, U∗

t , U∗
xt) = 0, i = 1, 2, . . . ,NCODE, (2)

where (1) defines the PDE part and (2) generalizes the coupled ODE part of the problem.

In (1), Pi,j and Ri depend on x, t, U , Ux, and V ; Qi depends on x, t, U , Ux, V and linearly on V̇ . The
vector U is the set of PDE solution values

U(x, t) = [U1(x, t), . . . , UNPDE(x, t)]T ,

and the vector Ux is the partial derivative with respect to x. Note that Pi,j , Qi and Ri must not depend
on ∂U

∂t . The vector V is the set of ODE solution values

V (t) = [V1(t), . . . , VNCODE(t)]
T ,

and V̇ denotes its derivative with respect to time.

In (2), ξ represents a vector of nξ spatial coupling points at which the ODEs are coupled to the PDEs.
These points may or may not be equal to some of the PDE spatial mesh points. U∗, U∗

x , R
∗, U∗

t and U∗
xt

are the functions U , Ux, R, Ut and Uxt evaluated at these coupling points. Each Fi may only depend
linearly on time derivatives. Hence the equation (2) may be written more precisely as

F = G − AV̇ − B

(
U∗

t

U∗
xt

)
, (3)

where F = [F1, . . . , FNCODE]
T , G is a vector of length NCODE, A is an NCODE by NCODE matrix, B

is an NCODE by (nξ×NPDE) matrix and the entries in G, A and B may depend on t, ξ, U∗, U∗
x and

[NP3390/19/pdf] D03PJF.1

D03PJF D03 – Partial Differential Equations

V . In practice the user needs only to supply a vector of information to define the ODEs and not the
matrices A and B. (See Section 5 for the specification of the user-supplied procedure ODEDEF).

The integration in time is from t0 to tout, over the space interval a ≤ x ≤ b, where a = x1 and b = xNBKPTS

are the leftmost and rightmost of a user-defined set of break-points x1, x2, . . . , xNBKPTS. The co-ordinate
system in space is defined by the value of m; m = 0 for Cartesian co-ordinates, m = 1 for cylindrical
polar co-ordinates and m = 2 for spherical polar co-ordinates.

The PDE system which is defined by the functions Pi,j , Qi and Ri must be specified in a subroutine
PDEDEF supplied by the user.

The initial values of the functions U(x, t) and V (t) must be given at t = t0. These values are calculated
in a user-supplied subroutine, UVINIT.

The functions Ri which may be thought of as fluxes, are also used in the definition of the boundary
conditions. The boundary conditions must have the form

βi(x, t)Ri(x, t, U, Ux, V) = γi(x, t, U, Ux, V, V̇), i = 1, 2, . . . ,NPDE, (4)

where x = a or x = b. The functions γi may only depend linearly on V̇ .

The boundary conditions must be specified in a subroutine BNDARY provided by the user.

The algebraic-differential equation system which is defined by the functions Fi must be specified in a
subroutine ODEDEF supplied by the user. The user must also specify the coupling points ξ in the array
XI. Thus, the problem is subject to the following restrictions:

(i) In (1), V̇j(t), for j = 1, 2, . . . ,NCODE, may only appear linearly in the functions Qi, for
i = 1, 2, . . . ,NPDE, with a similar restriction for γ;

(ii) Pi,j and the flux Ri must not depend on any time derivatives;
(iii) t0 < tout, so that integration is in the forward direction;
(iv) The evaluation of the functions Pi,j , Qi and Ri is done at both the break-points and internally

selected points for each element in turn, that is Pi,j , Qi and Ri are evaluated twice at each break-
point. Any discontinuities in these functions must therefore be at one or more of the mesh points;

(v) At least one of the functions Pi,j must be non-zero so that there is a time derivative present in the
PDE problem;

(vi) If m > 0 and x1 = 0.0, which is the left boundary point, then it must be ensured that the PDE
solution is bounded at this point. This can be done either by specifying the solution at x = 0.0 or
by specifying a zero flux there, that is βi = 1.0 and γi = 0.0.

The parabolic equations are approximated by a system of ODEs in time for the values of Ui at the mesh
points. This ODE system is obtained by approximating the PDE solution between each pair of break-
points by a Chebyshev polynomial of degree NPOLY. The interval between each pair of break-points is
treated by D03PJF as an element, and on this element, a polynomial and its space and time derivatives are
made to satisfy the system of PDEs at NPOLY−1 spatial points, which are chosen internally by the code
and the break-points. The user-defined break-points and the internally selected points together define the
mesh. The smallest value that NPOLY can take is one, in which case, the solution is approximated by
piecewise linear polynomials between consecutive break-points and the method is similar to an ordinary
finite element method.

In total there are (NBKPTS−1) × NPOLY+1 mesh points in the spatial direction, and NPDE ×
((NBKPTS−1)×NPOLY+1) + NCODE ODEs in the time direction; one ODE at each break-point for
each PDE component, NPOLY−1 ODEs for each PDE component between each pair of break-points, and
NCODE coupled ODEs. The system is then integrated forwards in time using a Backward Differentiation
Formula (BDF) method or a Theta method.

4 References

[1] Berzins M (1990) Developments in the NAG Library software for parabolic equations Scientific
Software Systems (ed J C Mason and M G Cox) Chapman and Hall 59–72

[2] Berzins M and Dew PM (1991) Algorithm 690: Chebyshev polynomial software for elliptic-parabolic
systems of PDEs ACM Trans. Math. Software 17 178–206

D03PJF.2 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

[3] Berzins M, Dew P M and Furzeland R M (1988) Software tools for time-dependent equations in
simulation and optimisation of large systems Proc. IMA Conf. Simulation and Optimization (ed A
J Osiadcz) Clarendon Press, Oxford 35–50

[4] Berzins M and Furzeland R M (1992) An adaptive theta method for the solution of stiff and nonstiff
differential equations Appl. Numer. Math. 9 1–19

[5] Zaturska N B, Drazin P G and Banks W H H (1988) On the flow of a viscous fluid driven along a
channel by a suction at porous walls Fluid Dynamics Research 4

5 Parameters

1: NPDE — INTEGER Input

On entry: the number of PDEs to be solved.

Constraint: NPDE ≥ 1.

2: M — INTEGER Input

On entry: the co-ordinate system used:

M = 0
indicates Cartesian co-ordinates,

M = 1
indicates cylindrical polar co-ordinates,

M = 2
indicates spherical polar co-ordinates.

Constraint: 0 ≤ M ≤ 2.

3: TS — real Input/Output

On entry: the initial value of the independent variable t.

On exit: the value of t corresponding to the solution values in U. Normally TS = TOUT.

Constraint: TS < TOUT.

4: TOUT — real Input

On entry: the final value of t to which the integration is to be carried out.

5: PDEDEF — SUBROUTINE, supplied by the user. External Procedure

PDEDEF must compute the functions Pi,j , Qi and Ri which define the system of PDEs. The
functions may depend on x, t, U , Ux and V ; Qi may depend linearly on V̇ . The functions must be
evaluated at a set of points.

Its specification is:

SUBROUTINE PDEDEF(NPDE, T, X, NPTL, U, UX, NCODE, V, VDOT, P, Q,
1 R, IRES)
INTEGER NPDE, NPTL, NCODE, IRES
real T, X(NPTL), U(NPDE,NPTL), UX(NPDE,NPTL), V(∗),
1 VDOT(∗), P(NPDE,NPDE,NPTL), Q(NPDE,NPTL),
2 R(NPDE,NPTL)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

[NP3390/19/pdf] D03PJF.3

D03PJF D03 – Partial Differential Equations

3: X(NPTL) — real array Input
On entry: contains a set of mesh points at which Pi,j , Qi and Ri are to be evaluated. X(1)
and X(NPTL) contain successive user-supplied break-points and the elements of the array will
satisfy X(1) < X(2) < . . . < X(NPTL).

4: NPTL — INTEGER Input
On entry: the number of points at which evaluations are required (the value NPOLY+1).

5: U(NPDE,NPTL) — real array Input
On entry: U(i, j) contains the value of the component Ui(x, t) where x = X(j), for i =
1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTL.

6: UX(NPDE,NPTL) — real array Input
On entry: UX(i, j) contains the value of the component ∂Ui(x,t)

∂x where x = X(j), for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTL.

7: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

8: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

9: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

Note. V̇i(t), for i = 1, 2, . . . ,NCODE, may only appear linearly in Qj, for j = 1, 2, . . . ,NPDE.

10: P(NPDE,NPDE,NPTL) — real array Output
On exit: P(i, j, k) must be set to the value of Pi,j(x, t, U, Ux, V) where x = X(k), for
i, j = 1, 2, . . . ,NPDE and k = 1, 2, . . . ,NPTL.

11: Q(NPDE,NPTL) — real array Output
On exit: Q(i, j) must be set to the value of Qi(x, t, U, Ux, V, V̇) where x = X(j), for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTL.

12: R(NPDE,NPTL) — real array Output
On exit: R(i, j) must be set to the value of Ri(x, t, U, Ux, V) where x = X(j), for i =
1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTL.

13: IRES — INTEGER Input/Output
On entry: set to −1 or 1.
On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator set to IFAIL = 6.

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PJF returns to the calling (sub)program with the error indicator set to IFAIL = 4.

PDEDEF must be declared as EXTERNAL in the (sub)program from which D03PJF is called.
Parameters denoted as Input must not be changed by this procedure.

D03PJF.4 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

6: BNDARY — SUBROUTINE, supplied by the user. External Procedure

BNDARY must compute the functions βi and γi which define the boundary conditions as in equation
(4).

Its specification is:

SUBROUTINE BNDARY(NPDE, T, U, UX, NCODE, V, VDOT, IBND, BETA,
1 GAMMA, IRES)
INTEGER NPDE, NCODE, IBND, IRES
real T, U(NPDE), UX(NPDE), V(∗), VDOT(∗), BETA(NPDE),
1 GAMMA(NPDE)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: U(NPDE) — real array Input
On entry: U(i) contains the value of the component Ui(x, t) at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

4: UX(NPDE) — real array Input
On entry: UX(i) contains the value of the component ∂Ui(x,t)

∂x at the boundary specified by
IBND, for i = 1, 2, . . . ,NPDE.

5: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

6: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

7: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

Note. V̇i(t), for i = 1, 2, . . . ,NCODE, may only appear linearly in γj , for j = 1, 2, . . . ,NPDE.

8: IBND — INTEGER Input
On entry: specifies which boundary conditions are to be evaluated. If IBND = 0, then
BNDARY must set up the coefficients of the left-hand boundary x = a. If IBND �= 0, then
BNDARY must set up the coefficients on the right-hand boundary, x = b.

9: BETA(NPDE) — real array Output
On exit: BETA(i) must be set to the value of βi(x, t) at the boundary specified by IBND, for
i = 1, 2, . . . ,NPDE.

10: GAMMA(NPDE) — real array Output
On exit: GAMMA(i) must be set to the value of γi(x, t, U, Ux, V, V̇) at the boundary specified
by IBND, for i = 1, 2, . . . ,NPDE.

11: IRES — INTEGER Input/Output
On entry: set to −1 or 1.
On exit: should usually remain unchanged. However, the user may set IRES to force the
integration routine to take certain actions as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator set to IFAIL = 6.

[NP3390/19/pdf] D03PJF.5

D03PJF D03 – Partial Differential Equations

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PJF returns to the calling (sub)program with the error indicator set to IFAIL = 4.

BNDARY must be declared as EXTERNAL in the (sub)program from which D03PJF is called.
Parameters denoted as Input must not be changed by this procedure.

7: U(NEQN) — real array Output

On exit: the computed solution Ui(xj , t), for i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTS and Vk(t), for
k = 1, 2, . . . ,NCODE, evaluated at t = S, as follows:

U(NPDE×(j − 1) + i) contain Ui(xj , t), for i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTS and

U(NPTS×NPDE+i) contain Vi(t), for i = 1, 2, . . . ,NCODE.

8: NBKPTS — INTEGER Input

On entry: the number of break-points in the interval [a, b].

Constraint: NBKPTS ≥ 2.

9: XBKPTS(NBKPTS) — real array Input

On entry: the values of the break-points in the space direction. XBKPTS(1) must specify the
left-hand boundary, a, and XBKPTS(NBKPTS) must specify the right-hand boundary, b.

Constraint: XBKPTS(1) < XBKPTS(2) < . . . < XBKPTS(NBKPTS).

10: NPOLY — INTEGER Input

On entry: the degree of the Chebyshev polynomial to be used in approximating the PDE solution
between each pair of break-points.

Constraint: 1 ≤ NPOLY ≤ 49.

11: NPTS — INTEGER Input

On entry: the total number of mesh points in the interval [a, b].

Constraint: NPTS = (NBKPTS−1) × NPOLY+1.

12: X(NPTS) — real array Output

On exit: the mesh points chosen by D03PJF in the spatial direction. The values of X will satisfy
X(1) < X(2) < . . . < X(NPTS).

13: NCODE — INTEGER Input

On entry: the number of coupled ODEs components.

Constraint: NCODE ≥ 0.

14: ODEDEF — SUBROUTINE, supplied by the user. External Procedure

ODEDEF must evaluate the functions F , which define the system of ODEs, as given in (3). If the
user wishes to compute the solution of a system of PDEs only (i.e., NCODE = 0), ODEDEF must
be the dummy routine D03PCK. (D03PCK is included in the NAG Fortran Library; however, its
name may be implementation-dependent: see the Users’ Note for your implementation for details.)

D03PJF.6 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

Its specification is:

SUBROUTINE ODEDEF(NPDE, T, NCODE, V, VDOT, NXI, XI, UCP, UCPX,
1 RCP, UCPT, UCPTX, F, IRES)
INTEGER NPDE, NCODE, NXI, IRES
real T, V(∗), VDOT(∗), XI(∗), UCP(NPDE,∗),
1 UCPX(NPDE,∗), RCP(NPDE,∗), UCPT(NPDE,∗),
2 UCPTX(NPDE,∗), F(∗)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: T — real Input
On entry: the current value of the independent variable t.

3: NCODE — INTEGER Input
On entry: the number of coupled ODEs in the system.

4: V(∗) — real array Input
On entry: V(i) contains the value of component Vi(t), for i = 1, 2, . . . ,NCODE.

5: VDOT(∗) — real array Input
On entry: VDOT(i) contains the value of component V̇i(t), for i = 1, 2, . . . ,NCODE.

6: NXI — INTEGER Input
On entry: The number of ODE/PDE coupling points.

7: XI(∗) — real array Input
On entry: XI(i) contains the ODE/PDE coupling points, ξi, for i = 1, 2, . . . ,NXI.

8: UCP(NPDE,∗) — real array Input
On entry: UCP(i, j) contains the value of Ui(x, t) at the coupling point x = ξj , for
i = 1, 2, . . .,NPDE; j = 1, 2, . . .,NXI.

9: UCPX(NPDE,∗) — real array Input
On entry: UCPX(i, j) contains the value of ∂Ui(x,t)

∂x at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

10: RCP(NPDE,∗) — real array Input
On entry: RCP(i, j) contains the value of the flux Ri at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

11: UCPT(NPDE,∗) — real array Input
On entry: UCPT(i, j) contains the value of ∂Ui

∂t at the coupling point x = ξj , for i =
1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

12: UCPTX(NPDE,∗) — real array Input
On entry: UCPTX(i, j) contains the value of ∂2Ui

∂x∂t at the coupling point x = ξj , for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NXI.

13: F(∗) — real array Output
On exit: F(i) must contain the ith component of F , for i = 1, 2, . . . ,NCODE, where F is
defined as

F = G − AV̇ − B

(
U∗

t

U∗
xt

)
, (5)

or
F = −AV̇ − B

(
U∗

t

U∗
xt

)
. (6)

The definition of F is determined by the input value of IRES.

[NP3390/19/pdf] D03PJF.7

D03PJF D03 – Partial Differential Equations

14: IRES — INTEGER Input/Output
On entry: the form of F that must be returned in the array F. If IRES = 1, then equation (5)
above must be used. If IRES = −1, then equation (6) above must be used.
On exit: should usually remain unchanged. However, the user may reset IRES to force the
integration routine to take certain actions as described below:

IRES = 2
indicates to the integrator that control should be passed back immediately to the calling
(sub)program with the error indicator set to IFAIL = 6.

IRES = 3
indicates to the integrator that the current time step should be abandoned and a smaller
time step used instead. The user may wish to set IRES = 3 when a physically meaningless
input or output value has been generated. If the user consecutively sets IRES = 3, then
D03PJF returns to the calling (sub)program with the error indicator set to IFAIL = 4.

ODEDEF must be declared as EXTERNAL in the (sub)program from which D03PJF is called.
Parameters denoted as Input must not be changed by this procedure.

15: NXI — INTEGER Input

On entry: number of ODE/PDE coupling points.

Constraints:

NXI = 0 if NCODE = 0.
NXI ≥ 0 if NCODE > 0.

16: XI(∗) — real array Input

Note: the dimension of the array XI must be at least max(1,NXI).

On entry: XI(i), i = 1, 2, . . . ,NXI, must be set to the ODE/PDE coupling points.

Constraint: XBKPTS(1) ≤ XI(1) < XI(2) < . . . < XI(NXI) ≤ XBKPTS(NBKPTS).

17: NEQN — INTEGER Input

On entry: the number of ODEs in the time direction.

Constraint: NEQN = NPDE × NPTS+NCODE

18: UVINIT — SUBROUTINE, supplied by the user. External Procedure

UVINIT must compute the initial values of the PDE and the ODE components Ui(xj , t0), for
i = 1, 2, . . . ,NPDE; j = 1, 2, . . . ,NPTS, and Vk(t0), for k = 1, 2, . . . ,NCODE.

Its specification is:

SUBROUTINE UVINIT(NPDE, NPTS, X, U, NCODE, V)
INTEGER NPDE, NPTS, NCODE
real X(NPTS), U(NPDE,NPTS), V(∗)

1: NPDE — INTEGER Input
On entry: the number of PDEs in the system.

2: NPTS — INTEGER Input
On entry: the number of mesh points in the interval [a, b].

3: X(NPTS) — real array Input
On entry: X(i), for i = 1, 2, . . . ,NPTS, contains the current values of the space variable xi.

D03PJF.8 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

4: U(NPDE,NPTS) — real array Output
On exit: U(i, j) must be set to the initial value Ui(xj , t0), for i = 1, 2, . . . ,NPDE; j =
1, 2, . . . ,NPTS.

5: NCODE — INTEGER Input
On entry: the number of coupled ODEs.

6: V(∗) — real array Input
On exit: V(i) must be set to the initial values of the components Vi(t0), for i =
1, 2, . . . ,NCODE.

UVINIT must be declared as EXTERNAL in the (sub)program from which D03PJF is called.
Parameters denoted as Input must not be changed by this procedure.

19: RTOL(∗) — real array Input

Note: the dimension of the array RTOL must be at least 1 if ITOL = 1 or 2 and at least NEQN if
ITOL = 3 or 4.

On entry: the relative local error tolerance.

Constraint: RTOL(i) ≥ 0 for all relevant i.

20: ATOL(∗) — real array Input

Note: the dimension of the array ATOL must be at least 1 if ITOL = 1 or 3 and at least NEQN if
ITOL = 2 or 4.

On entry: the absolute local error tolerance.

Constraint: ATOL(i) ≥ 0 for all relevant i.

21: ITOL — INTEGER Input

On entry: a value to indicate the form of the local error test. ITOL indicates to D03PJF whether
to interpret either or both of RTOL or ATOL as a vector or scalar. The error test to be satisfied is
‖ei/wi‖ < 1.0, where wi is defined as follows:

ITOL RTOL ATOL wi

1 scalar scalar RTOL(1)× |U(i)|+ATOL(1)
2 scalar vector RTOL(1)× |U(i)|+ATOL(i)
3 vector scalar RTOL(i)× |U(i)|+ATOL(1)
4 vector vector RTOL(i)× |U(i)|+ATOL(i)

In the above, ei denotes the estimated local error for the ith component of the coupled PDE/ODE
system in time, U(i), for i = 1, 2, . . . ,NEQN.

The choice of norm used is defined by the parameter NORM, see below.

Constraint: 1 ≤ ITOL ≤ 4.

22: NORM — CHARACTER*1 Input

On entry: the type of norm to be used. Two options are available:

’M’ – maximum norm.
’A’ – averaged L2 norm.

If Unorm denotes the norm of the vector U of length NEQN, then for the averaged L2 norm

Unorm =

√√√√ 1
NEQN

NEQN∑
i=1

(U(i)/wi)2,

[NP3390/19/pdf] D03PJF.9

D03PJF D03 – Partial Differential Equations

while for the maximum norm
Unorm = max

i
|U(i)/wi|.

See the description of the ITOL parameter for the formulation of the weight vector w.

Constraint: NORM = ’M’ or ’A’.

23: LAOPT — CHARACTER*1 Input

On entry: the type of matrix algebra required. The possible choices are:

’F’ – full matrix routines to be used;
’B’ – banded matrix routines to be used;
’S’ – sparse matrix routines to be used.

Constraint: LAOPT = ’F’, ’B’ or ’S’.

Note. The user is recommended to use the banded option when no coupled ODEs are present
(NCODE = 0).

24: ALGOPT(30) — real array Input

On entry: ALGOPT may be set to control various options available in the integrator. If the user
wishes to employ all the default options, then ALGOPT(1) should be set to 0.0. Default values will
also be used for any other elements of ALGOPT set to zero. The permissible values, default values,
and meanings are as follows:

ALGOPT(1) selects the ODE integration method to be used. If ALGOPT(1) = 1.0, a BDF method
is used and if ALGOPT(1) = 2.0, a Theta method is used.

The default value is ALGOPT(1) = 1.0.

If ALGOPT(1) = 2.0, then ALGOPT(i), for i = 2, 3, 4 are not used.

ALGOPT(2) specifies the maximum order of the BDF integration formula to be used. ALGOPT(2)
may be 1.0, 2.0, 3.0, 4.0 or 5.0.

The default value is ALGOPT(2) = 5.0.

ALGOPT(3) specifies what method is to be used to solve the system of nonlinear equations arising
on each step of the BDF method. If ALGOPT(3) = 1.0 a modified Newton iteration is used and if
ALGOPT(3) = 2.0 a functional iteration method is used. If functional iteration is selected and the
integrator encounters difficulty, then there is an automatic switch to the modified Newton iteration.

The default value is ALGOPT(3) = 1.0.

ALGOPT(4) specifies whether or not the Petzold error test is to be employed. The Petzold error
test results in extra overhead but is more suitable when algebraic equations are present, such as
Pi,j = 0.0, for j = 1, 2, . . . ,NPDE for some i or when there is no V̇i(t) dependence in the coupled
ODE system. If ALGOPT(4) = 1.0, then the Petzold test is used. If ALGOPT(4) = 2.0, then the
Petzold test is not used.

The default value is ALGOPT(4) = 1.0.

If ALGOPT(1) = 1.0, then ALGOPT(i), for i = 5, 6, 7 are not used.

ALGOPT(5), specifies the value of Theta to be used in the Theta integration method.

0.51 ≤ ALGOPT(5) ≤ 0.99.

The default value is ALGOPT(5) = 0.55.

ALGOPT(6) specifies what method is to be used to solve the system of nonlinear equations arising
on each step of the Theta method. If ALGOPT(6) = 1.0, a modified Newton iteration is used and
if ALGOPT(6) = 2.0, a functional iteration method is used.

D03PJF.10 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

The default value is ALGOPT(6) = 1.0.

ALGOPT(7) specifies whether or not the integrator is allowed to switch automatically between
modified Newton and functional iteration methods in order to be more efficient. If ALGOPT(7) =
1.0, then switching is allowed and if ALGOPT(7) = 2.0, then switching is not allowed.

The default value is ALGOPT(7) = 1.0.

ALGOPT(11) specifies a point in the time direction, tcrit, beyond which integration must not be
attempted. The use of tcrit is described under the parameter ITASK. If ALGOPT(1) �= 0.0, a value
of 0.0 for ALGOPT(11), say, should be specified even if ITASK subsequently specifies that tcrit will
not be used.

ALGOPT(12) specifies the minimum absolute step size to be allowed in the time integration. If this
option is not required, ALGOPT(12) should be set to 0.0.

ALGOPT(13) specifies the maximum absolute step size to be allowed in the time integration. If
this option is not required, ALGOPT(13) should be set to 0.0.

ALGOPT(14) specifies the initial step size to be attempted by the integrator. If ALGOPT(14) =
0.0, then the initial step size is calculated internally.

ALGOPT(15) specifies the maximum number of steps to be attempted by the integrator in any one
call. If ALGOPT(15) = 0.0, then no limit is imposed.

ALGOPT(23) specifies what method is to be used to solve the nonlinear equations at the initial
point to initialise the values of U , Ut, V and V̇ . If ALGOPT(23) = 1.0, a modified Newton iteration
is used and if ALGOPT(23) = 2.0, functional iteration is used.

The default value is ALGOPT(23) = 1.0.

ALGOPT(29) and ALGOPT(30) are used only for the sparse matrix algebra option, i.e., LAOPT
= ’S’.

ALGOPT(29) governs the choice of pivots during the decomposition of the first Jacobian matrix. It
should lie in the range 0.0 < ALGOPT(29) < 1.0, with smaller values biasing the algorithm towards
maintaining sparsity at the expense of numerical stability. If ALGOPT(29) lies outside this range
then the default value is used. If the routines regard the Jacobian matrix as numerically singular
then increasing ALGOPT(29) towards 1.0 may help, but at the cost of increased fill-in.

The default value is ALGOPT(29) = 0.1.

ALGOPT(30) is used as a relative pivot threshold during subsequent Jacobian decompositions (see
ALGOPT(29)) below which an internal error is invoked. ALGOPT(30) must be greater than zero,
otherwise the default value is used. If ALGOPT(30) is greater than 1.0 no check is made on the
pivot size, and this may be a necessary option if the Jacobian is found to be numerically singular
(see ALGOPT(29)).

The default value is ALGOPT(30) = 0.0001.

25: W(NW) — real array Workspace
26: NW — INTEGER Input

On entry: the dimension of the array W as declared in the (sub)program from which D03PJF is
called. Its size depends on the type of matrix algebra selected:

LAOPT = ’F’,
NW ≥ NEQN × NEQN + NEQN + NWKRES + LENODE,

LAOPT = ’B’,
NW ≥ (3×MLU+1) × NEQN + NWKRES + LENODE,

LAOPT = ’S’,
NW ≥ 4 × NEQN + 11 × NEQN/2 + 1 + NWKRES + LENODE.

[NP3390/19/pdf] D03PJF.11

D03PJF D03 – Partial Differential Equations

Where MLU = the lower or upper half bandwidths, and

MLU = (NPOLY+1) × NPDE−1, for PDE problems only, and,

MLU = NEQN−1, for coupled PDE/ODE problems.

NWKRES = 3× (NPOLY + 1)2
+(NPOLY + 1)× [NPDE2 + 6×NPDE +NBKPTS+ 1]
+ 8×NPDE+NXI× (5 ×NPDE+ 1) + NCODE+ 3,

when NCODE > 0, and NXI > 0.

NWKRES = 3× (NPOLY + 1)2
+(NPOLY + 1)× [NPDE2 + 6×NPDE +NBKPTS+ 1]
+ 13×NPDE+NCODE+ 4,

when NCODE > 0, and NXI = 0.

NWKRES = 3× (NPOLY + 1)2
+(NPOLY + 1)× [NPDE2 + 6×NPDE +NBKPTS+ 1]
+ 13×NPDE+ 5,

when NCODE = 0.

LENODE = (6+int(ALGOPT(2))}) × NEQN+50, when the BDF method is used and,

LENODE = 9 × NEQN+50, when a Theta method is used.

Note. When using the sparse option, the value of NW may be too small when supplied to the
integrator. An estimate of the minimum size of NW is printed on the current error message unit if
ITRACE > 0 and the routine returns with IFAIL = 15.

27: IW(NIW) — INTEGER array Output
On exit: the following components of the array IW concern the efficiency of the integration.

IW(1) contains the number of steps taken in time.

IW(2) contains the number of residual evaluations of the resulting ODE system used. One such
evaluation involves evaluating the PDE functions at all the mesh points, as well as one evaluation
of the functions in the boundary conditions.

IW(3) contains the number of Jacobian evaluations performed by the time integrator.

IW(4) contains the order of the ODE method last used in the time integration.

IW(5) contains the number of Newton iterations performed by the time integrator. Each iteration
involves residual evaluation of the resulting ODE system followed by a back-substitution using the
LU decomposition of the Jacobian matrix.

28: NIW — INTEGER Input
On entry: the dimension of array IW. Its size depends on the type of matrix algebra selected:

LAOPT = ’F’,
NIW ≥ 24,

LAOPT = ’B’,
NIW ≥ NEQN+24,

LAOPT = ’S’,
NIW ≥ 25 × NEQN+24.

Note. When using the sparse option, the value of NIW may be too small when supplied to the
integrator. An estimate of the minimum size of NIW is printed on the current error message unit if
ITRACE > 0 and the routine returns with IFAIL = 15.

D03PJF.12 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

29: ITASK — INTEGER Input

On entry: the task to be performed by the ODE integrator. The permitted values of ITASK and
their meanings are detailed below:

ITASK = 1
normal computation of output values U at t = TOUT (by overshooting and interpolating).

ITASK = 2
take one step in the time direction and return.

ITASK = 3
stop at first internal integration point at or beyond t = TOUT.

ITASK = 4
normal computation of output values U at t = TOUT but without overshooting t = tcrit where
tcrit is described under the parameter ALGOPT.

ITASK = 5
take one step in the time direction and return, without passing tcrit, where tcrit is described
under the parameter ALGOPT.

Constraint: 1 ≤ ITASK ≤ 5.

30: ITRACE — INTEGER Input

On entry: the level of trace information required from D03PJF and the underlying ODE solver.
ITRACE may take the value −1, 0, 1, 2, or 3. If ITRACE < −1, then −1 is assumed and similarly
if ITRACE > 3, then 3 is assumed. If ITRACE = −1, no output is generated. If ITRACE = 0, only
warning messages from the PDE solver are printed on the current error message unit (see X04AAF).
If ITRACE > 0, then output from the underlying ODE solver is printed on the current advisory
message unit (see X04ABF). This output contains details of Jacobian entries, the nonlinear iteration
and the time integration during the computation of the ODE system. The advisory messages are
given in greater detail as ITRACE increases. Users are advised to set ITRACE = 0, unless they are
experienced with the subchapter D02M–N of the NAG Fortran Library.

31: IND — INTEGER Input/Output

On entry: IND must be set to 0 or 1.

IND = 0
starts or restarts the integration in time.

IND = 1
continues the integration after an earlier exit from the routine. In this case, only the parameters
TOUT and IFAIL should be reset between calls to D03PJF.

Constraint: 0 ≤ IND ≤ 1.

On exit: IND = 1.

32: IFAIL — INTEGER Input/Output

On entry: IFAIL must be set to 0, −1 or 1. For users not familiar with this parameter (described
in Chapter P01) the recommended value is 0.

On exit: IFAIL = 0 unless the routine detects an error (see Section 6).

6 Error Indicators and Warnings

If on entry IFAIL = 0 or −1, explanatory error messages are output on the current error message unit
(as defined by X04AAF).

Errors detected by the routine:

IFAIL = 1

On entry, TOUT − TS is too small,

[NP3390/19/pdf] D03PJF.13

D03PJF D03 – Partial Differential Equations

or ITASK �= 1, 2, 3, 4 or 5,

or M �= 0, 1 or 2,

or at least one of the coupling point in array XI is outside the interval
[XBKPTS(1),XBKPTS(NBKPTS)],

or NPTS �= (NBKPTS−1) × NPOLY+1,

or NBKPTS < 2,

or NPDE ≤ 0,

or NORM �= ’A’ or ’M’,

or ITOL �= 1, 2, 3 or 4,

or NPOLY < 1 or NPOLY > 49,

or NCODE and NXI are incorrectly defined,

or NEQN �= NPDE × NPTS+NCODE,

or LAOPT �= ’F’, ’B’ or ’S’,

or IND �= 0 or 1,

or incorrectly defined user break-points, i.e., XBKPTS(i) ≥ XBKPTS(i + 1), for some
i = 1, 2, . . . ,NBKPTS−1,

or NW or NIW are too small,

or the ODE integrator has not been correctly defined; check ALGOPT parameter.

or IND = 1 on initial entry to D03PJF,

or either an element of RTOL or ATOL < 0.0,

or all the elements of RTOL and ATOL are zero.

IFAIL = 2

The underlying ODE solver cannot make any further progress with the values of ATOL and RTOL
across the integration range from the current point t = TS. The components of U contain the
computed values at the current point t = TS.

IFAIL = 3

In the underlying ODE solver, there were repeated error test failures on an attempted step, before
completing the requested task, but the integration was successful as far as t = TS. The problem
may have a singularity, or the error requirement may be inappropriate.

IFAIL = 4

In setting up the ODE system, the internal initialisation routine was unable to initialise the
derivative of the ODE system. This could be due to the fact that IRES was repeatedly set to
3 in the user-supplied subroutines PDEDEF, BNDARY or ODEDEF, when the residual in the
underlying ODE solver was being evaluated.

IFAIL = 5

In solving the ODE system, a singular Jacobian has been encountered. The user should check his
problem formulation.

IFAIL = 6

When evaluating the residual in solving the ODE system, IRES was set to 2 in at least one of the
user-supplied subroutines PDEDEF, BNDARY or ODEDEF. Integration was successful as far as
t = TS.

IFAIL = 7

The values of ATOL and RTOL are so small that the routine is unable to start the integration in
time.

IFAIL = 8

In one of the user-supplied routines, PDEDEF, BNDARY or ODEDEF, IRES was set to an invalid
value.

D03PJF.14 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

IFAIL = 9

A serious error has occurred in an internal call to D02NNF. Check problem specification and all
parameters and array dimensions. Setting ITRACE = 1 may provide more information. If the
problem persists, contact NAG.

IFAIL = 10

The required task has been completed, but it is estimated that a small change in ATOL and RTOL
is unlikely to produce any change in the computed solution. (Only applies when the user is not
operating in one step mode, that is when ITASK �= 2 or 5.)

IFAIL = 11

An error occurred during Jacobian formulation of the ODE system (a more detailed error
description may be directed to the current error message unit).

IFAIL = 12

In solving the ODE system, the maximum number of steps specified in ALGOPT(15) has been
taken.

IFAIL = 13

Some error weights wi became zero during the time integration (see description of ITOL). Pure
relative error control (ATOL(i) = 0.0) was requested on a variable (the ith) which has become
zero. The integration was succesful as far as t = TS.

IFAIL = 14

The flux function Ri was detected as depending on time derivatives, which is not permissible.

IFAIL = 15

When using the sparse option, the value of NIW or NW was not sufficient (more detailed
information may be directed to the current error message unit).

7 Accuracy

The routine controls the accuracy of the integration in the time direction but not the accuracy of the
approximation in space. The spatial accuracy depends on both the number of mesh points and on their
distribution in space. In the time integration only the local error over a single step is controlled and so
the accuracy over a number of steps cannot be guaranteed. The user should therefore test the effect of
varying the accuracy parameter ATOL and RTOL.

8 Further Comments

The parameter specification allows the user to include equations with only first-order derivatives in the
space direction but there is no guarantee that the method of integration will be satisfactory for such
systems. The position and nature of the boundary conditions in particular are critical in defining a stable
problem.

The time taken by the routine depends on the complexity of the parabolic system and on the accuracy
requested.

9 Example

This problem provides a simple coupled system of one PDE and one ODE.

(V1)
2 ∂U1

∂t
− xV1V̇1

∂U1

∂x
=

∂2U1

∂x2

V̇1 = V1U1 +
∂U1

∂x
+ 1 + t,

[NP3390/19/pdf] D03PJF.15

D03PJF D03 – Partial Differential Equations

for t ∈ [10−4, 0.1× 2i], for i = 1, 2, . . . , 5, x ∈ [0, 1].
The left boundary condition at x = 0 is

∂U1

∂x
= −V1 exp t.

The right boundary condition at x = 1 is

U1 = −V1V̇1.

The initial conditions at t = 10−4 are defined by the exact solution:

V1 = t, and U1(x, t) = exp {t(1− x)} − 1.0, x ∈ [0, 1],

and the coupling point is at ξ1 = 1.0.

9.1 Program Text

Note. The listing of the example program presented below uses bold italicised terms to denote precision-dependent details.
Please read the Users’ Note for your implementation to check the interpretation of these terms. As explained in the Essential
Introduction to this manual, the results produced may not be identical for all implementations.

* D03PJF Example Program Text
* Mark 16 Revised. NAG Copyright 1993.
* .. Parameters ..

INTEGER NOUT
PARAMETER (NOUT=6)
INTEGER NBKPTS, NEL, NPDE, NPOLY, NPTS, NCODE, M, NXI,

+ NEQN, NIW, NPL1, NWKRES, LENODE, NW
PARAMETER (NBKPTS=11,NEL=NBKPTS-1,NPDE=1,NPOLY=2,

+ NPTS=NEL*NPOLY+1,NCODE=1,M=0,NXI=1,
+ NEQN=NPDE*NPTS+NCODE,NIW=24,NPL1=NPOLY+1,
+ NWKRES=3*NPL1*NPL1+NPL1*
+ (NPDE*NPDE+6*NPDE+NBKPTS+1)+8*NPDE+NXI*(5*NPDE+1)
+ +NCODE+3,LENODE=11*NEQN+50,
+ NW=NEQN*NEQN+NEQN+NWKRES+LENODE)

* .. Scalars in Common ..
real TS

* .. Local Scalars ..
real TOUT
INTEGER I, IFAIL, IND, IT, ITASK, ITOL, ITRACE
LOGICAL THETA
CHARACTER LAOPT, NORM

* .. Local Arrays ..
real ALGOPT(30), ATOL(1), EXY(NBKPTS), RTOL(1),

+ U(NEQN), W(NW), X(NPTS), XBKPTS(NBKPTS), XI(1)
INTEGER IW(NIW)

* .. External Subroutines ..
EXTERNAL BNDARY, D03PJF, EXACT, ODEDEF, PDEDEF, UVINIT

* .. Common blocks ..
COMMON /TAXIS/TS

* .. Executable Statements ..
WRITE (NOUT,*) ’D03PJF Example Program Results’
ITRACE = 0
ITOL = 1
ATOL(1) = 1.0e-4
RTOL(1) = ATOL(1)
WRITE (NOUT,99999) NPOLY, NEL
WRITE (NOUT,99996) ATOL, NPTS

*

D03PJF.16 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

* Set break-points
*

DO 20 I = 1, NBKPTS
XBKPTS(I) = (I-1.0e0)/(NBKPTS-1.0e0)

20 CONTINUE
*

XI(1) = 1.0e0
NORM = ’A’
LAOPT = ’F’
IND = 0
ITASK = 1

*
* Set THETA to .TRUE. if the Theta integrator is required
*

THETA = .FALSE.
DO 40 I = 1, 30

ALGOPT(I) = 0.0e0
40 CONTINUE

IF (THETA) THEN
ALGOPT(1) = 2.0e0

ELSE
ALGOPT(1) = 0.0e0

END IF
*
* Loop over output value of t
*

TS = 1.0e-4
TOUT = 0.0e0
WRITE (NOUT,99998) XBKPTS(1), XBKPTS(3), XBKPTS(5), XBKPTS(7),

+ XBKPTS(11)
DO 60 IT = 1, 5

TOUT = 0.1e0*(2**IT)
IFAIL = -1

*
CALL D03PJF(NPDE,M,TS,TOUT,PDEDEF,BNDARY,U,NBKPTS,XBKPTS,NPOLY,

+ NPTS,X,NCODE,ODEDEF,NXI,XI,NEQN,UVINIT,RTOL,ATOL,
+ ITOL,NORM,LAOPT,ALGOPT,W,NW,IW,NIW,ITASK,ITRACE,
+ IND,IFAIL)

*
* Check against the exact solution
*

CALL EXACT(TOUT,NBKPTS,XBKPTS,EXY)
WRITE (NOUT,99997) TS
WRITE (NOUT,99994) U(1), U(5), U(9), U(13), U(21), U(22)
WRITE (NOUT,99993) EXY(1), EXY(3), EXY(5), EXY(7), EXY(11), TS

60 CONTINUE
WRITE (NOUT,99995) IW(1), IW(2), IW(3), IW(5)
STOP

*
99999 FORMAT (’ Degree of Polynomial =’,I4,’ No. of elements =’,I4,/)
99998 FORMAT (’ X ’,5F9.3,/)
99997 FORMAT (’ T = ’,F6.3)
99996 FORMAT (//’ Simple coupled PDE using BDF ’,/’ Accuracy require’,

+ ’ment =’,e10.3,’ Number of points = ’,I4,/)
99995 FORMAT (’ Number of integration steps in time = ’,I6,/’ Number o’,

+ ’f function evaluations = ’,I6,/’ Number of Jacobian eval’,
+ ’uations =’,I6,/’ Number of iterations = ’,I6,/)

99994 FORMAT (1X,’App. sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3)

[NP3390/19/pdf] D03PJF.17

D03PJF D03 – Partial Differential Equations

99993 FORMAT (1X,’Exact sol. ’,F7.3,4F9.3,’ ODE sol. =’,F8.3,/)
END

*
SUBROUTINE UVINIT(NPDE,NPTS,X,U,NCODE,V)

* Routine for PDE initial values (start time is 0.1D-6)
* .. Scalar Arguments ..

INTEGER NCODE, NPDE, NPTS
* .. Array Arguments ..

real U(NPDE,NPTS), V(*), X(NPTS)
* .. Scalars in Common ..

real TS
* .. Local Scalars ..

INTEGER I
* .. Intrinsic Functions ..

INTRINSIC EXP
* .. Common blocks ..

COMMON /TAXIS/TS
* .. Executable Statements ..

V(1) = TS
DO 20 I = 1, NPTS

U(1,I) = EXP(TS*(1.0e0-X(I))) - 1.0e0
20 CONTINUE

RETURN
END

*
SUBROUTINE ODEDEF(NPDE,T,NCODE,V,VDOT,NXI,XI,UCP,UCPX,RCP,UCPT,

+ UCPTX,F,IRES)
* .. Scalar Arguments ..

real T
INTEGER IRES, NCODE, NPDE, NXI

* .. Array Arguments ..
real F(*), RCP(NPDE,*), UCP(NPDE,*), UCPT(NPDE,*),

+ UCPTX(NPDE,*), UCPX(NPDE,*), V(*), VDOT(*),
+ XI(*)

* .. Executable Statements ..
IF (IRES.EQ.1) THEN

F(1) = VDOT(1) - V(1)*UCP(1,1) - UCPX(1,1) - 1.0e0 - T
ELSE IF (IRES.EQ.-1) THEN

F(1) = VDOT(1)
END IF
RETURN
END

*
SUBROUTINE PDEDEF(NPDE,T,X,NPTL,U,DUDX,NCODE,V,VDOT,P,Q,R,IRES)

* .. Scalar Arguments ..
real T
INTEGER IRES, NCODE, NPDE, NPTL

* .. Array Arguments ..
real DUDX(NPDE,NPTL), P(NPDE,NPDE,NPTL),

+ Q(NPDE,NPTL), R(NPDE,NPTL), U(NPDE,NPTL), V(*),
+ VDOT(*), X(NPTL)

* .. Local Scalars ..
INTEGER I

* .. Executable Statements ..
DO 20 I = 1, NPTL

P(1,1,I) = V(1)*V(1)
R(1,I) = DUDX(1,I)
Q(1,I) = -X(I)*DUDX(1,I)*V(1)*VDOT(1)

D03PJF.18 [NP3390/19/pdf]

D03 – Partial Differential Equations D03PJF

20 CONTINUE
RETURN
END

*
SUBROUTINE BNDARY(NPDE,T,U,UX,NCODE,V,VDOT,IBND,BETA,GAMMA,IRES)

* .. Scalar Arguments ..
real T
INTEGER IBND, IRES, NCODE, NPDE

* .. Array Arguments ..
real BETA(NPDE), GAMMA(NPDE), U(NPDE), UX(NPDE),

+ V(*), VDOT(*)
* .. Intrinsic Functions ..

INTRINSIC EXP
* .. Executable Statements ..

BETA(1) = 1.0e0
IF (IBND.EQ.0) THEN

GAMMA(1) = -V(1)*EXP(T)
ELSE

GAMMA(1) = -V(1)*VDOT(1)
END IF
RETURN
END

*
SUBROUTINE EXACT(TIME,NPTS,X,U)

* Exact solution (for comparison purposes)
* .. Scalar Arguments ..

real TIME
INTEGER NPTS

* .. Array Arguments ..
real U(NPTS), X(NPTS)

* .. Local Scalars ..
INTEGER I

* .. Intrinsic Functions ..
INTRINSIC EXP

* .. Executable Statements ..
DO 20 I = 1, NPTS

U(I) = EXP(TIME*(1.0e0-X(I))) - 1.0e0
20 CONTINUE

RETURN
END

9.2 Program Data

None.

9.3 Program Results

D03PJF Example Program Results
Degree of Polynomial = 2 No. of elements = 10

Simple coupled PDE using BDF
Accuracy requirement = 0.100E-03 Number of points = 21

X 0.000 0.200 0.400 0.600 1.000

[NP3390/19/pdf] D03PJF.19

D03PJF D03 – Partial Differential Equations

T = 0.200
App. sol. 0.222 0.174 0.128 0.084 0.000 ODE sol. = 0.200
Exact sol. 0.221 0.174 0.127 0.083 0.000 ODE sol. = 0.200

T = 0.400
App. sol. 0.492 0.378 0.272 0.174 0.000 ODE sol. = 0.400
Exact sol. 0.492 0.377 0.271 0.174 0.000 ODE sol. = 0.400

T = 0.800
App. sol. 1.226 0.897 0.616 0.377 0.000 ODE sol. = 0.800
Exact sol. 1.226 0.896 0.616 0.377 0.000 ODE sol. = 0.800

T = 1.600
App. sol. 3.954 2.597 1.612 0.896 -0.001 ODE sol. = 1.600
Exact sol. 3.953 2.597 1.612 0.896 0.000 ODE sol. = 1.600

T = 3.200
App. sol. 23.534 11.931 5.815 2.590 -0.008 ODE sol. = 3.202
Exact sol. 23.533 11.936 5.821 2.597 0.000 ODE sol. = 3.200

Number of integration steps in time = 32
Number of function evaluations = 446
Number of Jacobian evaluations = 15
Number of iterations = 105

D03PJF.20 (last) [NP3390/19/pdf]

